69p58dcydf888

Grant proposal meeting 12102024

基礎生物學門?醫工/骨科/幹細胞學門? IACUC 實驗設計 編列研究助理 國外差旅: GRC, EV Asia conference, foreign scholars **延攬研究人員表格區

Aim 1

(Phenotypic characterization) Granule property: with or without DNMT3L_AT FRAP

Aim 2

Omics profiling

Aim 3

Spermiogenesis (or stress/ injury response) - Injury repair: working cell model—liver?

12152024

G-quadruplex structures within the 3’UTR of LINE1 elements stimulate retrotransposition Sahakyan, A., Murat, P., Mayer, C. et al. Nat Struct Mol Biol 24, 243–247 (2017). https://doi.org/10.1038/nsmb.3367

Visualizing liquid-liquid phase transitions https://doi.org/10.1101/2023.10.09.561572

Spinach RNA Aptamer sequence from PDB DOI: https://doi.org/10.2210/pdb4KZD/pdb NAKB: 4KZD (mouse) Spinach is an in vitro-selected RNA aptamer that binds a GFP-like ligand and activates its green fluorescence, with an elongated structure containing two helical domains separated by an internal bulge that folds into a G-quadruplex motif

List of DNMT3L_AT-binding RNAs by prediction from catRAPID <-> rQ4 database <-> piRNA cluster database

Is rG4 constitutional for D3L_AT germ granule formation? Will removal or destabilization of G4 structure disintegrate the IMC? Will addition of G4 structure containing RNA into recombinant D3L_AT condensate

Does a membrane platform need to underpin D3L_AT IMC? Or specific lipid metabolites derived from mitochondrial membranes stimulate condensation, e.g. PA catalyzed by mitoPLD from cardiolipin? - palmitoylation engineered D3L_AT to ectopically express at plasma membrane? - PalmGRET construction

title: DNMT3L_AT functions as a RNA-binding scaffold for germ granules assembly associated with mitochondria dynamics

title: DNMT3L_AT facilitates mitochondria-associated granule formation, essential for timely transcriptional and translational regulation throughout meiosis.

標題:無膜胞器新成員DNMT3L_AT對減數分裂中RNA和蛋白質表達及降解時機的精準調控

DNMT3L_AT binding to RNAs nucleates germ granule formation

G3BP2:CAPRIN (stress granule formation; polysome dissembled) <=> G3BP:USP10 (polysome reformed)

PABPN1 EIF4A:EIF4G:EIF4E EIF2-α (EIF2S1):EIF2-β (EIF2S2): EIF2-γ (EIFS3) complex for translation initiation; phosphorylation of eIF2alpha by HRI, GCN2, or PKR inhibits protein synthesis, leading to stress response; p-eIF2 is de-phosphorylated by PP1, which can be inhibited by PPP1R; therefore, PPP1R2 (Protein Phosphatase 1 Regulatory Inhibitor Subunit 2; or inhibitor 2, R2) stimulates stress granule formation??

CYFIP1-EIF4E-FMR1 complex binds to the mRNA cap for translational repression. (CYFIP1, NUFIP2, FXR1 <-> DNMT3L proximal)

CELF1 (CUGBP Elav-like family member 1) Component of an EIF2 complex at least composed of CELF1/CUGBP1, CALR, CALR3, EIF2S1, EIF2S2, HSP90B1 and HSPA5. Associates with polysomes *Inactivation of CUG-BP1/CELF1 Causes Growth, Viability, and Spermatogenesis Defects in Mice Kress, C., Gautier-Courteille, C., Osborne, H. B., Babinet, C., & Paillard, L. (2007). Molecular and cellular biology, 27(3), 1146–1157. https://doi.org/10.1128/MCB.01009-06 *RNA CUG-binding protein 1 increases translation of 20-kDa isoform of CCAAT/enhancer-binding protein beta by interacting with the alpha and beta subunits of eukaryotic initiation translation factor 2. Timchenko, N. A., Wang, G. L., & Timchenko, L. T. (2005). JBC 280(21), 20549–20557. https://doi.org/10.1074/jbc.M409563200

PNBP-2 (PNBPN1): Polyadenylate-binding protein 2

*A Translation-Activating Function of MIWI/piRNA during Mouse Spermiogenesis. Dai, P., Wang, X., Gou, L. T., … & Liu, M. F. (2019). Cell, 179(7), 1566–1581.e16. https://doi.org/10.1016/j.cell.2019.11.022

https://pubmed.ncbi.nlm.nih.gov/39333531/ Rojas-Ríos P, Chartier A, Enjolras C, et al. piRNAs are regulators of metabolic reprogramming in stem cells. Nat Commun. 2024;15(1):8405. Published 2024 Sep 27. doi:10.1038/s41467-024-52709-4 https://pubmed.ncbi.nlm.nih.gov/39312580/ Wei C, Yan X, Mann JM, et al. PNLDC1 catalysis and postnatal germline function are required for piRNA trimming, LINE1 silencing, and spermatogenesis in mice. PLoS Genet. 2024;20(9):e1011429. Published 2024 Sep 23. doi:10.1371/journal.pgen.1011429 https://pubmed.ncbi.nlm.nih.gov/39271704/ Ramat A, Haidar A, Garret C, Simonelig M. Spatial organization of translation and translational repression in two phases of germ granules. Nat Commun. 2024;15(1):8020. Published 2024 Sep 13. doi:10.1038/s41467-024-52346-x https://academic.oup.com/biolreprod/article/99/4/773/4985832 Yaoyao Wu, Kaibiao Xu, Huayu Qi, Domain-functional analyses of PIWIL1 and PABPC1 indicate their synergistic roles in protein translation via 3′-UTRs of meiotic mRNAs, Biology of Reproduction, Volume 99, Issue 4, October 2018, Pages 773–788, https://doi.org/10.1093/biolre/ioy100 https://pubmed.ncbi.nlm.nih.gov/31835033/ Dai P, Wang X, Gou LT, et al. A Translation-Activating Function of MIWI/piRNA during Mouse Spermiogenesis. Cell. 2019;179(7):1566-1581.e16. doi:10.1016/j.cell.2019.11.022